Zero-curvature point of minimal graphs
نویسندگان
چکیده
Motivated by a classical result of Finn and Osserman (J Anal Math 343(12):351–364, 1964), who proved that the Jenkins–Serrin graph over square inscribed in unit disk is extremal for Gaussian curvature point O (so-called centre) minimal graphs above center 0 disk, provided tangent plane horizontal, we ask answer to question concerned "second derivative" such its at zero. We prove extremals are certain regular hexagon vanishes horizontal centre.
منابع مشابه
A generalization of zero-divisor graphs
In this paper, we introduce a family of graphs which is a generalization of zero-divisor graphs and compute an upper-bound for the diameter of such graphs. We also investigate their cycles and cores
متن کاملOn zero-divisor graphs of quotient rings and complemented zero-divisor graphs
For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...
متن کامل$C_4$-free zero-divisor graphs
In this paper we give a characterization for all commutative rings with $1$ whose zero-divisor graphs are $C_4$-free.
متن کاملAll Ramsey (2K2,C4)−Minimal Graphs
Let F, G and H be non-empty graphs. The notation F → (G,H) means that if any edge of F is colored by red or blue, then either the red subgraph of F con- tains a graph G or the blue subgraph of F contains a graph H. A graph F (without isolated vertices) is called a Ramsey (G,H)−minimal if F → (G,H) and for every e ∈ E(F), (F − e) 9 (G,H). The set of all Ramsey (G,H)−minimal graphs is denoted by ...
متن کاملminimal, vertex minimal and commonality minimal cn-dominating graphs
we define minimal cn-dominating graph $mathbf {mcn}(g)$, commonality minimal cn-dominating graph $mathbf {cmcn}(g)$ and vertex minimal cn-dominating graph $mathbf {m_{v}cn}(g)$, characterizations are given for graph $g$ for which the newly defined graphs are connected. further serval new results are developed relating to these graphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monatshefte für Mathematik
سال: 2021
ISSN: ['0026-9255', '1436-5081']
DOI: https://doi.org/10.1007/s00605-021-01640-7